Полиуретаны
Полиуретан — это гетероцепный полимер, в макромолекуле которого присутствует уретановая группа —N(R)—C(O)O—, где R = Н, алкилы (-СН3,-С2Н5 и т.д.), арил (-С6Н5) или ацил. Кроме того, в макромолекулах полиуретанов могут содержаться простые и сложноэфирные функциональные группы, мочевинная, амидная группы. Полиуретаны относятся к синтетическим эластомерам.
Полиуретанами называют высокомолекулярные соединения, содержащие в основной цепи макромолекулы уретановые группировки:
Наиболее распространенным методом синтеза полиуретанов является ступенчатая (миграционная) полимеризация ди- или полиизоцианатов с соединениями, содержащими две или несколько гидроксильных групп. В качестве таких гидроксилсодержащих соединений чаще всего используют простые или сложные полиэфиры. Получаемые в этом случае полиуретаны называют полиэфируретанами.
В настоящее время производство полиуретанов растет очень быстрыми темпами и достигло значительных масштабов, особенно в технически развитых странах.
Сырье для получения полиуретанов
Изоцианаты
Промышленные способы получения алифатических и ароматических ди- и триизоцианатов основаны на фосгенировании соответствующих ди- и триаминов:
Наиболее широкое применение в производстве полиуретанов находят толуилен-2,4-диизоцианат (I), гексаметилендиизоцианат (II) и 4,4′-дифенилметандиизоцианат (III):
Иногда изоцианаты переводят в «скрытую» форму. Такие «скрытые», или «блокированные», изоцианаты получаются, например, при взаимодействии изоцианатов с фенолами:
При нагревании до температуры выше 100 °С эти соединения распадаются на исходные компоненты. В качестве нелетучих «скрытых» полиизоцианатов применяют также продукты взаимодействия изоцианатов с триметилолпропаном, капролактамом, фталамидом, 2-меркаптобензтиазолом и др.
В качестве исходных соединений с изоцианатными группами в последнее время используют продукты олиго- и циклотримеризации диизоцианатов. Например, олигомеры и тримеры изоцианатов при реакции с гликолями, простыми и сложными полиэфирами образуют полиуретаны сетчатого строения. Использование олигомеров и тримеров изоцианатов имеет ряд технологических преимуществ, обусловленных их пониженной летучестью (меньшей, чем у диизоцианатов). При этом получают полиуретаны с более высокой теплостойкостью.
Гидроксилсодержание соединения
В качестве гидроксилсодержащих соединений используют простые и сложные полиэфиры, простые политиоэфиры, полиацетали, касторовое масло и его производные, а также низкомолекулярные гликоли.
Полиоксипропилендиол — простой полиэфир с концевыми гидроксильными группами — получают полимеризацией пропиленоксида в присутствии щелочей или алкоголятов щелочных металлов. В качестве исходного гидррксилсодержащего соединения используют пропиленгликоль или дипропиленгликоль. Полимеризация протекает по схеме
где В——гидроксил— или алкоголят-ион.
Полиоксипропилентриолы получают из пропиленоксида и низкомолекулярных трехатомных спиртов — триметилолпропана, глицерина и гексантриола-1,2,6— в присутствии щелочи или алкоголята соответствующего спирта. На основе пропиленоксида или смеси этиленоксида и пропиленоксида и многоатомных спиртов (пентаэритрита, сорбита, маннита, левоглюкозана, дульцита и др.) получают полифункциональные простые полиэфиры, содержащие более трех гидроксильных групп. В качестве гидроксилсодержащих соединений используют также простые полиэфиры, получаемые путем полимеризации тетрагидрофурана, совместной полимеризацией тетрагидрофурана с пропиленоксидом и продукты типа О-пропилглицерина.
Для синтеза сложных полиэфиров обычно используют адипиновую и себациновую кислоты, фталевую кислоту и ее ангидрид, а из многоатомных спиртов — диолы (этилен-, пропилен- и диэтиленгликоли) и триолы (глицерин, гексантриол-1,6,6 и триметилолпропан). Введение избытка многоатомного спирта приводит к обрыву цепи и получению низкомолекулярного полиэфира с высоким содержанием гидроксильных групп. При небольшом избытке многоатомного спирта получаются продукты более высокой молекулярной массы с уменьшенным содержанием гидроксильных групп. В производстве полиуретанов применяют в основном сложные полиэфиры молекулярной массы 800—2100.
Из низкомолекулярных гликолей наибольшее применение в производстве полиуретанов нашел бутиленгликоль. На основе гликолей, содержащих n-фениленовые и 1,4-циклогексиленовые группы, можно получать полиуретаны с повышенной температурой плавления и большей водостойкостью, но они не нашли широкого применения в технике.
В промышленности бутиленгликоль (бутандиол-1,4) получают гидрированием бутиндиола-1,4, в водном растворе при 20—30 МПа и 110—130 °С над катализатором Ni/Cu/Mg/Si02:
Процесс образования полиуретанов может протекать как в массе, так и в среде растворителей (хлорбензол, толуол, диметилформамид и др.)
При взаимодействии бифункциональных мономеров, например, диизоцианатов и гликолей, образуются полимеры линейного строения:
При взаимодействии мономеров с функциональностью больше двух образуются полимеры разветвленного или пространственного строения.
Синтез полимера на основе гексаметилендиизоцианата и бутиленгликоля проводят следующим образом. В реактор, снабженный рубашкой и мешалкой, загружают бутиленгликоль, нагревают его до 85—90 °С в атмосфере азота при интенсивном перемешивании и затем добавляют небольшими порциями в течение 30—60 мин гексаметилендиизоцианат.
После окончания экзотермической реакции температуру повышают и образовавшийся полимер выдерживают при 190—210 °С до полного завершения реакции. Процесс контролируют по вязкости расплава или раствора пробы в м-крезоле.
По окончании реакции полимер вакуумируют (остаточное давление 2,6—5,2 кПа) для удаления пузырьков газа, выдавливают из реактора сжатым азотом в виде ленты, охлаждают, дробят на куски и высушивают.
Синтез линейного полиуретана в смеси растворителей (хлорбензола и дихлорбензола) проводят следующим образом.
Раствор бутиленгликоля нагревают до 60 °С, после чего постепенно добавляют эквимольное количество гексаметилендиизоцианата и нагревают реакционную смесь до кипения. Затем смесь выдерживают в течение 4—5 ч при температуре кипения. Образовавшийся полимер выпадает в осадок в виде порошка или хлопьев; его отфильтровывают, обрабатывают острым паром для удаления остатков растворителей и высушивают в вакууме при 65 °С.
Свойства и применение полиуретанов
В зависимости от природы исходных компонентов и строения макромолекул полиуретаны могут быть термопластичными и термореактивными, а изделия — пластичными и хрупкими, мягкими и твёрдыми.
Линейные полиуретаны на основе низкомолекулярных гликолей обладают способностью к волокнообразованию; при вытяжке за счет ориентации макромолекул и увеличения степени кристалличности полимера происходит упрочнение волокон.
Прочность линейных полиуретанов обусловлена в значительной степени наличием водородных связей, возникающих между полярными карбонильными и иминными группами соседних макромолекул. Уменьшение количества таких межмолекулярных водородных связей способствует снижению степени кристалличности полимера, а следовательно, и снижению его температуры размягчения и механической прочности.
Атомы кислорода в главных цепях полиуретанов вызывают снижение температуры плавления (размягчения) линейных полиуретанов и улучшают их растворимость в органических растворителях. Присутствие атомов кислорода в цепи придает полиуретанам эластичность (гибкость) и, следовательно, улучшает перерабатываемость в изделия. Полиуретаны имеют низкое влагопоглощение, достаточную морозостойкость, хорошие адгезионные свойства и высокую износостойкость. Все эти свойства обусловили широкое применение полиуретанов в народном хозяйстве.
Из полиуретанов изготовляют эластичные, стойкие к старению волокна и пленки. Для получения защитных покрытий и эмалирования проводов, в производстве мебели и обуви используют полиуретановые клеи и лаки, обладающие высокой теплостойкостью, водо- и атмосферостойкостью. Находят применение полиуретановые компаунды — многокомпонентные системы, наполненные минеральными или органическими наполнителями, перерабатываемые методом свободной заливки и не требующие обычно для отверждения дополнительного нагрева. Полиуретановые эластомеры на основе олигомерных простых и сложных полиэфирполиолов с молекулярной массой 1000—3000 обладают масло- и бензостойкостью, высокой эластичностью, сочетающейся с довольно большой прочностью (относительное удлинение при разрыве 500—1000%, разрушающее напряжение при растяжении 19,6—49,0 МПа). Полиуретановые эластомеры отличаются высокой стойкостью к истиранию, что очень важно при эксплуатации таких изделий, как шины, конвейерные ленты для горнодобывающей промышленности и т. п.
Однако основное применение полиуретаны находят в производстве пенополиуретанов.
Литьевые изделия из полиуретанов
Для получения литьевых изделий используют линейные полиуретаны на основе гексаметилендиизоцианата и бутиленгликоля. Из полиуретанов с молекулярной массой 13 000—15 000 вырабатывают волокна. Из более высокомолекулярных продуктов литьем под давлением изготовляются различные детали.
Физико-механические показатели изделий из литьевых полиуретанов приведены ниже:
- Кажущаяся плотность: 1210 кг/м3;
- Разрушающее напряжение при растяжении: 49,0—58,7 Мпа;
- Разрушающее напряжение при сжатии: 78,4—83,2 Мпа;
- Разрушающее напряжение при изгибе: 69,0—78,4 Мпа;
- Ударная вязкость: 49,4 кДж/м2;
- Температура плавления: 176—180 °С;
- Теплостойкость по Мартенсу: 60 °С;
- Коэффициент теплопроводности: 0,31 Вт/м·К;
- Удельное объемное электрическое сопротивление: 1·1014—2·1014 Ом·см;
- Тангенс угла диэлектрических потерь при 106 Гц: 0,014—0,020;
- Диэлектрическая проницаемость при 106 Гц: 4,5—4,8;
- Электрическая прочность: 20—25 кВ/мм;
- Усадка при литье: 1,0—1,2 %;
- Водопоглощение (максимальное): 2 %.
Линейные полиуретаны перерабатывают в изделия (пленки, листовые материалы, тонкие пластины) при 180—185 °С. Изделия могут работать длительное время при 100—110 °С и высокой влажности; их применяют в радио- и электротехнической промышленности.
Техника безопасности при производстве полиуретанов и защита окружающей среды
При производстве пенополиуретанов воздух может быть загрязнен толуилендиизоцианатом, особенно при получении пенополиуретанов методом напыления. Толуилендиизоцианат является токсичным веществом, оказывающим раздражающее действие на кожу, слизистые оболочки дыхательных путей и глаз. Толуилендиизоцианат — аллерген, который может вызывать бронхиальную астму и экземы. Симптомы отравления проявляются в кашле, загрудинных болях и хрипах в легких. Процессы приготовления смесей, получения и вызревания блоков полиуретанов должны проводиться в вентилируемых помещениях.
Мировой рынок полиуретанов
По данным информационно-аналитической компании Ceresana, объем мирового рынка полиуретанов составлял в 2014 году порядка $50 млрд.
Ожидается, что в период с 2015 по 2022 год среднегодовой темп прироста данного рынка будет составлять 4,8%, что (в конечном итоге) позволит достигнуть отметки в $74 млрд.
Как и в случае с большинством полимерных материалов, ключевыми потребителями полиуретна являются: автомобильная промышленность, строительная индустрия, а также производство мебели и постельных принадлежностей.
Вандерберг Э. Пластмасса в промышленности и в технике. М., Машиностроение, 1964. 196 с.
Домброу Б. А. Полиуретаны. М., Госхимиздат, 1961. 152 с.
Лафенгауз А: П., Юоичева Е. Я.— В кн.: Пенопласта. М., Оборонгиз, 1960, с. 117;
Павлов В. В., Горячев М, С, Дурасова Т. Ф. Там же, с. 131.
Коршак В. В., Фрунзе Г. М. Синтетические гетероцепные полиамиды. М., изд.-во АН СССР, 1962. 523 с.
Кузнецов Е, В., Прохорова И, Я. Альбом технологических схем производства полимеров и пластмасс на их основе. Изд. 2-е. М., Химия, 1975А74 с.
Лосев И. Я. Тростянская Е. Б. Химия синтетических полимеров. Изд. 2-е. М., Химия, 1971. 615 с.
Николаев А. Ф. Синтетические полимеры и пластические массы на их основе. Изд. 2-е, М.~Л., Химия, 1966. 768 с.
Саундерс Дж. X., Фриш К. /С. Химия полиуретанов. Пер. с англ./Под ред. X. М. Энтелиса. М., Химия, 1968. 470 с.
Керча Ю. Ю. Физическая химия полиуретанов. Киев, Наукова думка, 1979, 220 с.
Берлин А. А., Шутов Ф. А. Упрочненные газонаполненные пластмассы. М., Химия, 1980. 192 с.
Композиционные материалы на основе полиуретанов. Пер. с англ./Под ред. Ф. А. Шутова. М, Химия, 1982. 214 с.
Дементьев А. Г., Тараканов О. Г. Структура и свойства пенопластов. М., Химия, 1983. 208 с.
Берлин А. А., Шутов Ф. А. Пенополимеры на основе реакционноспособных олигомеров М., Химия, 1977, 116 с.
Мировой рынок полиуретана составит $74 млрд к 2022 году - Новости MPlast.by, 22 февраля 2016 года
Автор: Коршак В.В.
Источник: Коршак В.В., Технологии пластических масс, 3-е издание, 1985 год
Дата в источнике: 1985 год