Здесь можно разместить свое видео с You TUBE!

Полиметилметакрилат и другие полиакрилаты: производство и свойства

Полиакрилаты – это полимеры эфиров акриловой кислоты  с общей формулой [—CH2CH(COOR)—]n. Наибольшее практическое  значение имеют поли-n-алкилакрилаты: при R = C2-C12 полиакрилаты представляют собой аморфные полимеры с низкой температурой стеклования, при R > C12  они кристаллизуются с участием боковых цепей и по внешнему виду напоминают парафины. Стереорегулярные полиакрилаты с разветвленными боковыми радикалами R = C3-C4, получаемые анионной полимеризацией, кристаллизуются с участием основной цепи. Полиакрилаты циклических спиртов (циклогексанола и др.)- это жесткие полимеры, полиакрилаты ненасыщенных спиртов (например, аллилового) – хрупкие стеклообразные сетчатые полимеры.

Полиметилметакрилат (ПММА) – это полимер метилметакрилата (метилового эфира метакриловой кислоты), имеющий формулу [-СН2С(СН3)(СООСН3)-]n.


Производство блочного полиметилметакрилата (органического стекла)

Полиметилметакрилат (пластифицированный или непластифицированный) получают блочной полимеризацией метилметакрилата в формах из силикатного стекла в присутствии инициаторов. При полимеризации в формах для уменьшения количества выделяющегося тепла и усадки в формы заливают 10—30%-ный раствор полиметилметакрилата в мономере (сироп). При получении пластифицированного полиметилметакрилата в качестве пластификатора применяют фталаты (дибутилфталат), фосфаты и другие соединения (5—15% от массы мономера).

Технологический процесс получения листового органического стекла является периодическим и состоит из стадий изготовления стеклянных форм, приготовления мономера или сиропа и заливки его в формы, полимеризации (мономера или сиропа) в формах, охлаждения, разъема форм, обработки и упаковки.

Формы изготовляют из силикатного стекла размером 1200×1400, 1450×1600 и 1600×1800 мм и толщиной 5—11 мм. Силикатное стекло предварительно промывают и сушат в специальном агрегате. Листы силикатного стекла по краям разделяют трубкой из пластифицированного поливинилхлорида или укладывают между ними резиновый шланг, обернутый бумагой, прочитанной водным раствором поливинилового спирта. Расстояние между силикатными стеклами определяет толщину листов органического стекла.

Мономер готовят при комнатной температуре в аппарате с мешалкой. В аппарат загружают метилметакрилат и инициатор— пероксид бензоила (0,1—1,0% от массы мономера).Смесь тщательно перемешивают. Приготовленный мономер поступает в специальный аппарат-мерник, из которого затем подается в формы.

Полимеризацию мономера в формах проводят в туннельной полимеризационной камере с циркулирующим горячим воздухом или в ваннах с циркулирующей водой, нагретой до 20 °С.

Формы, уложенные горизонтально на специальные тележки, нагревают при постепенном повышении температуры воздуха от -45 до 120 °С в течение 24—48 ч. Формы проходят последовательно ряд камер или нагреваются в одной камере.

При использовании сиропа процесс полимеризации состоит из двух стадий:

  1. предварительной полимеризации метилметакрилата с образованием сиропа (форполимера);
  2. окончательной полимеризации сиропа с получением органического стекла.

Применение сиропа обеспечивает более высокую степень полимеризации (уменьшается обрыв цепи, повышается молекулярная масса полимера), кроме того при его использовании уменьшается образование вздутий и пузырей, что способствует улучшению качества органического стекла. Сироп получают форполимеризацией мономера в аппарате с мешалкой, обратным холодильником, системой обогрева и охлаждения в присутствии незначительных количеств инициатора (0,05—0,1%) при 70— 80 °С в течение 2 ч при слабом перемешивании. В результате полимеризации образуется раствор полимера в мономере, содержащий 5—10% полимера. После охлаждения в полученный сироп вводят инициатор и тщательно перемешивают. Затем сироп заливают в формы для окончательной полимеризации.

Сироп можно готовить также, растворяя полиметилметакрилат в виде «крупки» (отходы органического стекла) в мономере.

В аппарат-смеситель 1  загружают ММА, «крупку» ПММАинициатор, пластификатор и краситель (при получении окрашенного стекла).

 «Крупку» получают путем измельчения обрезков или бракованных листов органического стекла на станке, просеивая их через сито, и термообработки в течение 1—8 ч при 40—150 °С до образования продукта необходимой молекулярной массы.

Ниже приведены нормы загрузки компонентов в аппарат-смеситель, (в массовых частях):

  • ММА – 100;
  • «Крупка» – 1—6;
  • Стеарин – 1—2;
  • Пероксид бензоила – 0,12—0,2;
  • Дибутилфталат – 5—8;
  • Краситель – 0,002—0,5.

Для получения матовых стекол с перламутровым оттенком вводят 6— 9 массовых частей полистирола.Схема процесса производства листового органического стекла

В аппарате 1 при перемешивании сначала растворяют «крупку» в ММА при 45 °С в течение 2—3 ч, затем вводят пластификатор, инициатор и другие компоненты. Полученный сироп перемешивают и сливают в вакуумизатор 2 для извлечения из реакционной массы растворенного воздуха. После этого сироп заливают в формы 3, которые помещают в шкафы полимеризации 4. В шкафы подается, горячий воздух, нагреваемый в калориферах. Температуру полимеризации изменяют в зависимости от толщины получаемого листа, постепенно повышая ее от 40 до 100 °С.

Продолжительность полимеризации определяется толщиной стекла и колеблется от 20 до 100 ч. Окончание процесса полимеризации проверяют в формах по содержанию остаточного мономера.

По окончании полимеризации формы охлаждают, разнимают и извлекают полимер в виде листов или блоков. Разъем форм можно проводить как мокрым, так и сухим методом. При мокром методе формы погружают в ванны, заполненные горячей водой. При сухом разъеме охлаждение форм до комнатной температуры проводится в термокамере воздухом. Полученные листы органического стекла поступают на обработку и контроль, затем их оклеивают бумагой, обрезают края листов по формату и упаковывают. Силикатные стекла поступают на мойку для повторного использования.

В качестве инициаторов реакции полимеризации метилметакрилата применяют также перкарбонаты. При получении толстых листов органического стекла и крупных блоков используют различные окислительно-восстановительные системы, которые позволяют проводить полимеризацию метилметакрилата при более низких температурах.


Производство суспензионных полиакрилатов и полиметакрилатов

Суспензионную полимеризацию эфиров акриловой и метакриловой кислот проводят в водной среде в присутствии инициаторов, растворимых в мономере. Этот метод применяется для полимеризации эфиров низших спиртов (метилового и этилового) метакриловой кислоты и эфиров акриловой кислоты. В качестве инициаторов используют пероксиды и азосоединения, чаще всего— пероксид бензоила. Стабилизаторами суспензии служат желатин и поливиниловый спирт, метилцеллюлоза, соли полиакриловой и полиметакриловой кислот и др. Полимеры образуются в виде гранул. Размер образующихся гранул зависит от содержания и природы стабилизатора, а также от скорости перевешивания реакционной среды.

Полимеризацию проводят в реакторе-автоклаве из нержавеющей стали емкостью 20 м3, рассчитанном на давлении 0,3— 0,5 МПа, снабженном лопастной мешалкой, рубашкой для обогрева и охлаждения.

В реактор загружают дистиллированную воду и мономер (отношение 3:1), затем вводят стабилизатор суспензии (около 3% от массы мономера). После перемешивания в реактор вводят пластификатор — дибутил-, диоктилфталаты, дибутилсебадинат и др. (от 5 до 30% от массы мономера) и если нужно, краситель. Затем добавляют раствор инициатора (0,2—0,5%) в мономере.

Полимеризацию проводят сначала при 70—75 °С, а затем температура повышается до 80—85 °С за счет теплоты, выделяющейся в результате реакции. Продолжительность процесса –  около 4 ч.

Полимеризацию в суспензии можно проводить и при более высокой температуре под давлением. Например, гранульный полиметилметакрилат, пригодный для изготовления изделий прессованием, получают в автоклаве при 120—134°С. В реакционную смесь вводят различные добавки: смазочные вещества (стеариновая кислота или лауриловый спирт), термостабилизаторы (диоктилсульфид), регуляторы молекулярной массы полимера и др.

Окончание полимеризации определяют по содержанию мономера в полимере, которое не должно превышать 1— 2%. Гранулы полимера поступают на центрифугу или нутчфильтр, где их отделяют от жидкой фазы и промывают водой или разбавленным раствором серной кислоты (которую затем отмывают водой) для удаления остатков стабилизатора суспензии. Далее полимер сушат в гребковой вакуум-сушилке или в сушилке с встречным потоком воздуха при температуре около 100 °С. Сухие гранулы полимера направляют на упаковку или дальнейшую переработку.

Полученные, гранулы перерабатывают в изделия литьем под давлением (при 190—280°С) и экструзией. Полимер с частицами размером не более 0,2 мм можно перерабатывать в изделия методом прессования при 140—180 °С и давлении 9,8—14,7 МПа.

Для литья обычно применяют полиметилметакрилат со средней молекулярной массой 20000—30000, который получают в присутствии пероксида бензоила и карбоната магния в автоклаве при 80—120 °С.


Производство эмульсионных полиакрилатов и полиметакрилатов

Эмульсионную (латексную) полимеризацию эфиров акриловой и метакриловой кислот проводят в водной среде в присутствии инициаторов, растворимых в воде, но нерастворимых в мономере. Реакция протекает с высокой скоростью, образующийся полимер имеет молекулярную массу большую, чем при полимеризации в блоке, суспензии и в растворе.

Полимер образуется в виде латекса, из которого можно выделять твердый продукт в виде тонкодиоперсного порошка.

При эмульсионной полимеризации в качестве эмульгаторов применяют различные мыла (олеиновые), соли органических сульфокислот, сульфированные масла и т. п., а также различные поверхностно-активные вещества неионогенного типа. Инициаторами служат персульфат аммония, пероксид водорода и другие пероксиды, растворимые в воде.

Полимеризацию проводят в нейтральной или слегка кислой среде. Соотношение мономера, воды, эмульгатора и инициатора такое же, как и при полимеризации в суспензии. Реакцию проводят в условиях, аналогичных условиям полимеризации в суспензии при 60—90 °С. Контроль процесса осуществляют по содержанию мономера в полимере, которое по завершении реакции не должно превышать 1—2%. Порошок полимера выделяют из эмульсии путем разрушения ее серной кислотой или испарения воды. Полученный тонкодисперсный порошок фильтруют на центрифуге, отмывают от эмульгатора водой или спиртом, сушат при 40—70 °С и направляют на дальнейшую переработку.

Метод эмульсионной полимеризации широко применяется для получения полиметилакрилата, полибутилметакрилата и других полиакрилатов.


Производство полиакрилатов и полиметакрилатов в растворе

Полимеризацию эфиров акриловой и метакриловой кислот в растворе проводят только в тех случаях, когда полимеры используют для приготовления лаков.

В качестве растворителей применяют бензол, изопропилбензол, хлорбензол, толуол, ацетон, циклогексанон и др.

Инициаторами служат пероксид бензоила, динитрил азобисизомасляной кислоты и другие инициаторы радикального типа. При полимеризации в растворе образуются полимеры с низкой молекулярной массой вследствие передачи цепи на растворитель.

В промышленности полимеризацию метилметакрилата обычно проводят в водно-метанольной среде (30 :70), в которой растворяется мономер, но не растворяется полимер.

Полиметилметакрилат образуется в виде порошка, выпадающего в осадок. Полимер отфильтровывают на центрифуге, а водно-метанольную смесь возвращают в процесс.


Свойства полимеров эфиров акриловой и метакриловой кислот

Полимеры эфиров акриловой и метакриловой кислот представляют собой термопластичные, аморфные материалы, прозрачные и бесцветные. В зависимости от строения при комнатной температуре они могут быть твердыми, эластичными или мягкими. Полиалкилметакрилаты характеризуются большей твердостью, чем полиалкилакрилаты.

Физико-механические свойства полиалкилакрилатов и полиалкилметакрилатов зависят от размера спиртового радикала в сложноэфирной группе. С увеличением длины радикала твердость, плотность и другие механические свойства полимера ухудшаются, снижается температура размягчения полимера.

Полиалкилакрилаты с большим спиртовым радикалом являются вязкими жидкостями.  

Полиметилметакрилат — твердый полимер с молекулярной массой от 20 000 до 200 000 (в зависимости от метода получения и условий полимеризации).

Блочный полиметилметакрилат (органическое стекло) обладает высокой механической прочностью, легкостью и светопрозрачностью.

Непластифицированный полиметилметакрилат имеет плотность 1180—1190 кг/м3, его теплостойкость по Вика 105—115°С, теплостойкость по Мартенсу 60—80 °С, водопоглощение составляет 0,2 %. Показатель преломления полиметилметакрилата 1,49, он пропускает до 91—92% лучей видимой части спектра, 75% ультрафиолетовых лучей (силикатное стекло пропускает 0,6—3%) и большую часть инфракрасных лучей; обладает хорошими диэлектрическими свойствами, стойкостью к старению в естественных условиях. Блочный полиметилметакрилат хорошо поддается формованию и вытяжке при 120 °С и выше.

Стереорегулярный изотактический полиметилметакрилат, полученный при низких температурах, имеет температуру стеклования 45 °С и температуру плавления 160 °С, синдиотактический полимер — температуру стеклования 115°С и температуру плавления 200 °С.

Под действием внешних сил, главным образом растягивающих напряжений, в органическом стекле часто появляются трещины, которые в ряде случаев образуют полости с полным внутренним отражением. Это явление, получившее название «серебрение», значительно снижает качество органического стекла, ухудшает его свойства. Повышению стойкости органического стекла к растрескиванию способствуют пластификация и ориентация полимера, нагретого до 140—150 °С, растяжением в двух взаимно перпендикулярных направлениях. Это приводит также к увеличению ударной вязкости в 7—10 раз.

При нагревании полимеров эфиров акриловой и метакриловой кислот до 160 °С происходит их плавление, а выше этой температуры начинается деструкция. Так, полиметилакрилат деструктируется при 250 °С с образованием низкомолекулярных полимеров, диоксида углерода и метанола, а полиметилметакрилат — при 300 °С с образованием исходного мономера (80%).

При нагревании выше 250 °С происходит деструкция полибутилметакрилата с образованием изобутилена и смеси различных продуктов.

Полимеры эфиров акриловой и метакриловой кислот растворяются в сложных эфирах, кетонах, в хлорированных и ароматических углеводородах, плохо растворяются в алифатических углеводородах и низших спиртах. Растворимость в малополярных соединениях улучшается с увеличением длины алифатического радикала в сложноэфирной группе. С возрастанием молекулярной массы полимера растворимость ухудшается. При комнатной температуре они стойки к действию многих веществ. Действие излучений на полиалкилакрилаты приводит к частичной деструкции и сшиванию полимеров.

Полиалкилакрилаты и полиалкилметакрилаты способны окрашиваться в различные цвета при добавлении к ним соответствующих красителей и пигментов.

Наибольшее распространение получил полиметилметакрилат, который применяется главным образом для изготовления органического стекла.

В зависимости от физико-механических свойств, состояния поверхности и размера оптических искажений органическое стекло вырабатывается различных сортов и марок.

Полиметилметакрилат можно применять в электротехнике в конструкциях сухих высоковольтных разрядников.

В химической промышленности нашел применение материал на основе полиметилметакрилата с наполнителем — графитом. Он используется для изготовления электродов хлорных ванн, химической теплообменной аппаратуры и т.д.

Из полибутилметакрилата получают также гибкие шланги и оболочки для кабеля, имеющие высокую маслостойкость, стойкость к действию озона и атмосферных факторов.

Для модификации полимеров эфиров акриловой и метакриловой кислот широко используют метод сополимеризации.

В промышленности выпускается сополимер бутилметакрилата с метакриловой кислотой (БМК-5), который характеризуется хорошей адгезией к металлам и высокой светостойкостью. Широко,используются сополимеры метилметакрилата со стиролом.

Широкое распространение получили компаунды, применяемые в качестве диэлектриков для защиты обмоток водопогружных двигателей, в конструкциях измерительных трасформаторов и как влагонепроницаемые материалы для различных технических целей.

Освоено производство сополимеров эфиров акриловой и метакриловой кислот с винилхлоридом, винилиденхлоридом, винилацетатом, с простыми виниловыми эфирами и другими мономерами.


 

Список литературы:
Дебский В. Полиметилметакрилат. М., Химия, 1972. 151 с.
Кузнецов Е. В., Прохорова И. Я., Файзулина Д. Л. Альбом технологических схем производства полимеров и пластмасс на их основе. Изд. 2-е. М., Химия, 1976. 108 c.
Лосев И. Л., Тростянская Е. Б. Химия синтетических полимеров. Изд. 3-е. М., Химия, 1971. 615с.
Николаев А. Ф. Синтетические полимеры и пластические массы на их основе., Изд. 2-е. М. —JL, Химия, 1966. 768 с. Технология пластических масс, изд. Химия, Л., 1977. 366 с.
Губимое М. Ш., Шеров Б. В. Органическое стекло. — М., Химия, 1981. 260 с.
Акриловые олигомеры и материалы на их основе. Берлин А. А., Королев Г. В., Кефели Т. Я.,Сиверпга Ю. М. —М., Химия, 1982. 242 с.

Автор:
Источник: Коршак В.В., Технологии пластических масс, 3-е издание, 1985 год
Дата в источнике: 1985 год
Заметили ошибку? Выделите ее и нажмите Ctrl+Enter